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Abstract. Constraint Handling Rules [5] (CHR) is a concurrent commited-
choice constraint programming language to describe transformations (rewrit-
ings) among multi-sets of constraints. One of the main CHR execution
tasks is to search for constraints from the store which match the con-
straints in the CHR rule head. In this paper, we demonstrate that laziness
and concurrency are highly useful features to implement this search task
efficiently.

1 Introduction

Constraint Handling Rules [5] (CHR) is a high level concurrent commited-
choice constraint programming language to describe transformations (rewrit-
ings) among multi-sets of constraints (atomic formulae). Originally, CHR was
designed to write incremental constraint solvers, but CHR is now used in a wide
range of other applications such as type system design and agent specification.
The semantics of CHR and its compilation is a fairly well studied subject. [2,
7, 10] Traditionally, CHR are compiled into logic languages such as Prolog and
HAL and a number of efficient implementations exist. CHR is also implemented
in Java [1] as well as the functional programming language Haskell [4]. One of the
main compilation tasks is to search for constraints from the store which match
the constraints in the CHR rule head.

In this paper, we demonstrate that laziness and concurrency are highly useful
features to implement this search task efficiently. Lazy evaluation is the technique
of delaying computations until the time where the result of the computation is
required, thus allowing us to define operations like building the match tree in
a purely declarative manner, without the worry of any runtime performance
penalties. Concurrency on the other hand allow us to specify search tasks in
parallel, hence possibly improving the performance of CHR execution. For this
paper, we demostrate an implementation of the lazy and concurrent CHR match
searching in Haskell [6], which is a lazy functional programming language with
powerful concurrency abstractions [9].

Specifically, we make the following contributions:

– We first show how laziness can be used to implement the task of searching
for matching constraints declaratively and thus more elegantly (Section 4).
Existing CHR optimizations such as optimal join ordering and early guard
scheduling can be easily integrated into our approach.



– Next, we employ concurrency to implement the search task more efficiently
(Section 5). As in the previous case, existing CHR optimization methods can
be integrated easily.

– We also develop a hybrid approach which combines laziness and concurrency
(Section 6).

– We review a number of practical CHR examples which benefit from our
approach (Section 7).

We continue in Section 2 where we highlight the key ideas of our lazy search
method. Section 3 reviews background material on CHR. We conclude in Section
8 where we also discuss related work.

2 A Motivating Example

A CHR program is essentially a set of rules that describes rewritings among a
multiset of constraints (atomic formulae) until a fixed-point is reached. A simple
example of a CHR program is

A,B,C ⇔ D A, B,C ⇒ D A \ B,C ⇔ D

This example shows the three main types of CHR rules. The first rule is
a simplification rule which says ”if constraints A,B and C are in the store,
then delete them and add D” while the second (middle), a propagation rule
says ”if constraints A,B and C are in the store, then add D”. The right most
rule is known as a simpagation rule which is a mix between simplification and
propagation rules: Constraints before the ’\’ (A) are not deleted, while constraint
after (B and C) are. Hence a significant part of CHR execution is the searching
for sets of constraints in a constraint store that match rule heads (left-hand-
side of rules). Particularly propagation rules need all possible matches, while
simplification rules only one. This search space can be abstractly viewed as a
match tree, which is an n-ary tree where each node contain a numbered constraint
(constraints paired with unique integers to distinguish multiple copies) from the
constraint store. For instance, given the following constraint store S,

S ≡ {A#1, B#2, B#3, C#4, C#5}

we have a search space represented by the following match tree, assuming
that we search in a left to right ordering of the rule heads:

A#1
↙ ↘

B#2 B#3
↙ ↘ ↙ ↘

C#4 C#5 C#4 C#5
↓ ↓ ↓ ↓

M1 M2 M3 M4

With lazy functional programming, we can implement the search for match-
ing constraints elegantly as follows:
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data Cons = A | B | C | D
data MTree = MTree Cons [MTree]

buildMTree :: [Cons] -> [Cons] -> [MTree]
buildMTree (c:cs) store =

let candidates = filter (==c) store
in map (\c’ -> MTree c’ (buildMTree cs store)) candidates

buildMTree [] = []

propMatches :: [MTree] -> [[Cons]]
propMatches ((MTree c mts’):mts) =

(map (c:) (propMatches mts’)) ++ (propMatches mts)
propMatches [] = []

simpMatch :: [MTree] -> [Cons]
simpMatch mts = head (propMatches mts)

Functions propMatches and simpMatch are essentially defined by the same
code. The first argument (store) represents the constraint store, while the
second represents the left hand side of the rule. Lazy evaluation ensures that
when findOneMatch is called, only the first match is evaluated, thus never suf-
fers from unneccessary runtime computations of unrequired matches. Note that
lazy evaluation also allow us to separately define the search space construc-
tion buildMTree and the searching routines declaratively without performance
penalty. The matching tree may seem redundant here when defined only for sim-
plification and propagation matches, however when we introduce simpagation
rule matches (Section 4.2), where an efficient implementation involves pruning
techniques, its purpose will be more significant.

We have made a few simplifying assumptions in the above framework: First,
constraints are just propositional, hence matching here is simple equality. Also,
CHR rules traditionally include guard conditions which must be checked before
a match can be commited. We will address these extensions Section 4.

3 Constraint Handling Rules

3.1 Syntax and Semantics

We review the syntax and refined operational semantics of CHR. CHR describes
multi-set rewriting of constraints, which are either builtin constraints or CHR
constraints. These rewritings are specified by a set of CHR simpagation rules of
the form:

r @ H1 \ H2 ⇔ g | C
We call H1 the propagation heads and H2 the simplification heads of the

rule, each of which are sequences of CHR constraints. g is a builtin constraint
referred to as the guard and C, a sequence of CHR and builtin constraints is
the body of the rule. We assign each constraint in H1 and H2 a unique integer,
known as the occurrence number. We shall denote a simpagation rule with empty
propagation head (simplification rule) as r @ H ⇔ C and a simpagation rule
with empty simplification head (propagation rule) as r @ H ⇒ C. We denote
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the empty list as ε and the empty set as ∅. Multiset union is denoted by ] and
we sometimes treat sequences (lists) as multisets if ordering is unimportant.

To differentiate among copies of the same CHR constraints in the multiset
store, we introduce numbered CHR constraint, which is a CHR constraint c
paired with an integer n denoted by c#n. We will refer to this integer n as
the identifier of the constraint c. For convinence, we define auxiliary functions
Cons(c#n) and Id(c#n) which returns c and n respectively, and overload them
to lists and multisets of constraints in the obvious manner. A CHR execution
state is the tuple:

〈G, S,B, T 〉n
where G is a multiset of constraints known as the goals, S is a multiset of

CHR constraints (constraint store), B is a builtin constraint builtin store, T
is the propagation history which is a set of sequences of constraint identifiers
appended with a rule name. Finally, n is an integer representing the next free
identifier.

Informally the refined CHR semantics defines the exhaustive application of
CHR rules, triggered by a multiset of goal constraints. The declarative semantics
is based on the following 3 transitions, which maps execution states to execution
states C to C ′, denoted C � C ′.

〈G, S, B, T 〉n � 〈G, S, B, T 〉n

1. Solve
〈{b} ]G, S, B, T 〉n � 〈G, S, b ∧B, T 〉n

where b is a built-in constraint.
2. Introduce

〈{c} ]G, S, B, T 〉n � 〈G, {c#n} ] S, B, T 〉(n+1)

where c is a CHR constraint.
3. Apply

〈G, H1 ]H2 ] S, B, T 〉n � 〈θ(C) ]G, H1 ] S, B, T ′〉n
where

∃(r @ H ′
1 \ H ′

2 ⇔ g | C) ∧
∃θ, a matching substitution such that:

Cons(H1) ≡ θ(H ′
1)

Cons(H2) ≡ θ(H ′
2)

CT |=S B → ∃r(θ ∧ g)
Id(H1) + +Id(H2) + +[r] /∈ T
T ′ ≡ {Id(H1) + +Id(H2) + +[r]} ∪ T

The Solve transition passes a new built-in constraint to the built-in store,
while the Introduce transition does the same for CHR constraints to the con-
straint store. The Apply transition non-deterministically picks a rule and a
subset of the constraint store that contains constraints matching the heads of
the rule and applies the rewrite specified by the rule, provided the guard is en-
tailed from the constraint theory CT . The history list T keeps track of all rule
combinations that has fired, so as to ensure that each set of constraints matching
a rule head fires a rule at most once.

The declarative semantics is highly non-deterministic. This is because it
declaratively specifies the operational behaviour of CHR programs, but do not
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impose explicitly an order in which goals are processed and an order in which rule
matches are tried. Most CHR systems implement the refined operational seman-
tics [3] which defines a more deterministic execution model of CHR programs.
Informally, the refined semantics execute CHR goals in left-to-right depth first
order, which essentially means treating the goals G of a CHR execution state as a
stack: only the left most constraint (active) may be executed for any given state,
and newly added constraints are added to the left (head) of G. Further more,
an active goal constraint must be matched with rule heads in a specific order,
normally assumed to be the top down and left-to-right order of appearence of the
CHR rule heads. Note that the matching tree abstraction is also compatible with
the refined semantics, simply by only allowing match trees to be construction
from the active goal constraint as the root.

Consider the abstract CHR program shown in Figure 1 which consists of 3
rules: r1 is a simplification rule (no propagate heads), r2 a propagation rule (no
simplify heads) and r3 a simpagation rule. The following shows a constraint store
S from the CHR program in figure 1, and a corresponding match tree containing
matching heads of the r3 rule under the active constraint a(5,W ).

Constraint Store S
S ≡ {a(5, R)#1, c(R, 3)#2, c(R, 2)#3, b(2)#4, b(8)#5}

Match Tree of r3 @ a(X, Y ) \ b(W ), c(Y, Z) ⇔ X > Z | d(X, W, Y, Z)
Prop a(X, Y ) : a(5, R)#1

↙ ↘
Simp c(Y, Z) : c(R, 3)#2 c(R, 2)#4

↙ ↘ ↙ ↘
Simp b(W ) : b(2)#5 b(8)#6 b(2)#5 b(8)#6

↓ ↓ ↓ ↓
Match : θ1 θ2 θ3 θ4

where θ1 ≡ {X 7→ 5, Y 7→ R, Z 7→ 3, W 7→ 2} θ2 ≡ {X 7→ 5, Y 7→ R, Z 7→ 3, W 7→ 8}
θ3 ≡ {X 7→ 5, Y 7→ R, Z 7→ 2, W 7→ 2} θ4 ≡ {X 7→ 5, Y 7→ R, Z 7→ 2, W 7→ 8}

We assume for now that the order in which partner constraints are searched
for is arbitrally chosen. In practice, optimal join ordering is determined by anal-
ysis techniques detailed in [2]. A CHR rule head match is a pair consisting of a
set of matching constraints and the matching substitution that matches it to the
CHR rule head. Note that for the above matching tree, we will fire the matches
{(θ1, {#1,#2,#5}), (θ4, {#1,#4,#6})} as each contains their own unique sim-
plification heads ({#2,#5} and {#4,#6} respectively). Another alternative set
of matches that may fire is {(θ2, {#1,#2,#6}), (θ3, {#1,#4,#5})}. If we con-
sider the simplification rule r1 instead we can only fire a single match, while in
the other extreme case (propagation rule r2), we can fire all matches (assuming
that none has been fired before).

4 Searching For Matching Constraints Lazily

We refine the approach from Section 2 to handle the full CHR semantics, by
including matching substitutions and guard constraints. First, we consider the
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r1 @ a(X, Y ), b(W ), c(Y, Z) ⇔ X > Z | d(X, W, Y, Z)
r2 @ a(X, Y ), b(W ), c(Y, Z) ⇒ X > Z | d(X, W, Y, Z)
r3 @ a(X, Y ) \ b(W ), c(Y, Z) ⇔ X > Z | d(X, W, Y, Z)

Fig. 1. An Example CHR Program

data Term = Value String | Var String
data Cons = Cons { symbol::String , args::[Term] }

| NumCons { nsymbol::String , nargs::[Term] , nid::Int }
data RuleHead = RuleHead { htype::HeadType , cons::Cons }
data HeadType = Simp | Prop
type Subst = [(Term,Term)]

apply :: Subst -> Cons -> Cons
compose :: Subst -> Subst -> Subst
match :: Cons -> Cons -> Maybe Subst

Fig. 2. CHR Data Representation & Matching Interfaces

special cases of simplification and propagation CHR in Section 4.1. As observed
earlier, in case of a simplification CHR we only require to find one match whereas
for a propagation CHR we want to find all matches. The situation gets more
complicated in case of simpagation CHR rules, which we will address in Section
4.2.

Figure 2 shows the representation of terms and constraints in Haskell data
types Term and Cons. The RuleHead and RuleType datatypes describe rule
heads, which are essentially constraints tagged with a head type indicating if
it is a simplification Simp or propagation Prop head. These are followed by in-
terfaces of substitution and matching over terms and constraints in 3 functions
apply, compose and match with their obvious meanings. An occurrence rule head
compilation is thus represented by a list of RuleHead datatypes.

4.1 Lazy Simplification and Propagation Match Search

We show now how simplification (one match) and propagation matches (all
matches) can be implemented lazily. Figure 3 shows the matching tree data struc-
ture MTree and a naive implementation of the CHR constraint store ListCHRStore,
which is simply a list of constraints. The function getCandidates retrieves all
matching constraints from a constraint store given the constraint to be matched.
The SearchTask data type represents the matching search sequence for each
CHR rule occurrence. A search task Lookup c represents the task of branching
the search with constraints in the store matching c, while Guard g means that
the guard g can be schedule at the current node (hence pruning away nodes that
do not pass the guard). Hence for a CHR rule r @ A,B, C ⇒ g | D, we assume
that its head and guard is compiled into 3 basic matching search sequence (as-
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type ListCHRStore = [Cons]
data MTree = MNode RuleHead [MTree] | MLeaf Subst

getCandidates :: Cons -> ListCHRStore -> [(Subst,Cons)]
getCandidates p (c:cs) =

case match p c of
Just sub -> (sub,c):(getCandidates p cs)
Nothing -> getCandidates p cs

getCandidates [] = []

data SearchTask = Lookup RuleHead
| Guard (Subst -> Bool)

buildMTree :: Subst -> [SearchTask] -> ListCHRStore -> [MTree]
buildMTree sub ((Guard g):ts) st =

if g sub then buildMTree sub ts st else []
buildMTree sub ((Lookup r):ts) st =

let RuleHead h c = r
ms = getCandidates (apply sub c) st

in map (\(sub’,c’) -> MTree (RuleHead h c’) (buildMTree (compose sub sub’) ts st)) ms
buildMTree sub [] = [MLeaf sub]

data Match = Match { subst::Subst , heads::[RuleHead] }

propMatches :: [RuleHead] -> [MTree] -> [Match]
propMatches rs ((MNode r mts’):mts) = (propMatches (rs++[r]) mts’)++(propMatches rs mts)
propMatches rs ((MLeaf sub):mts) = (Match sub rs):(propMatches rs mts)
propMatches [] = []

simpMatch :: [RuleHead] -> [MTree] -> Match
simpMatch rs mts = head (propMatches rs mts)

Fig. 3. MTree Builder & Simplification/Propagation Rule Head Match Search

suming left to right ordering of rule heads), one for the search sequence starting
from each rule head occurrence:

occurrenceA ≡ [Lookup A, Lookup B, Lookup C, Guard g]
occurrenceB ≡ [Lookup B, Lookup A, Lookup C, Guard g]
occurrenceC ≡ [Lookup C, Lookup A, Lookup B, Guard g]

This compilation scheme of CHR rule heads is almost similiar to existing
schemes. Note that basic CHR optimizations [7, 2, 10] can be applied to this
compilation. The function buildMTree returns all possible matching trees given
a constraint store and a list of SearchTask. Note that we can use the refined
semantics to ’drive’ the search by supplying an active constraint as the root of
a MTree. An important point is that the buildMTree declaratively specifies the
entire match tree that represent the search space of finding rule head matches
from a constraint store. However, in a lazy language like Haskell subtrees of the
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data TVar a
newTVar :: STM (TVar a) writeTVar :: TVar a -> a -> STM ()
readTVar :: TVar a -> STM a atomically :: STM a -> IO a

Fig. 4. Haskell Transactional Memory Interfaces

mtree are only ever computed when their values are explicitly required. This
applies also to the getCandidate function.

The data type Match represents a match pair consisting of matching substi-
tution of type Subst and the set of matching rule heads of type [RuleHead].
Given a list of MTree, propagation and simplification matches can be extracted
by the the propMatches (returns all matches from a MTree) and simpMatch
(returns left most match from a MTree) functions. The simpMatch function is
defined as the head (left most) element of the result of propMatches and thanks
to laziness, the tail of the list is never evaluated.

4.2 Lazy Simpagation Match Search

Simplification and propagation are special cases where we must retrieve one or
all of the matches, tasks which requires no search. In this section we show how an
efficient match search routine for simpagation rules can be implemented. Since,
the former rules can be treated as special simpagation rules, this implementation
subsumes that of the previous subsection. Consider the following matching tree,
from the example in Section 3.1:

Prop a(X, Y ) : a(5, R)#1
↙ ↘

Simp c(Y, Z) : c(R, 3)#2 c(R, 2)#4
↙ ↘ ↙ ↘

Simp b(W ) : b(2)#5 b(8)#6 b(2)#5 b(8)#6
↓ ↓ ↓ ↓

Match : θ1 θ2 θ3 θ4

We wish to find the matches {(θ1, {#1,#2,#5}), (θ4, {#1,#4,#6})} as they
each have unique simplification heads. A naive way to do this is to extract all
matches and linear filter away overlapping matches. However we wish to do
this efficiently, by pruning away overlapping matches in the MTree. Note that
commiting to θ1 not only invalidates θ2 (a sibling), it also invalidates θ3 (non-
sibling). Hence to prune away invalidate matches, we can ’thread’ through a list
of constraints (possibly indexed by constraint id) representing the constraints
which already has been commited. This solution however introduce the addi-
tional burden of keeping track of and indexing a simplification head ’history’
list.

A better solution would be to allow the search procedures to immediately
physically commit to the match (delete simplification heads from the constraint
store) after verifying that all its simplification heads are still in the store. If
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simplification heads cannot be verified (already deleted), the match is dropped.
Thus we do not need to keep track of any additional data structures, while
the match search procedure additionally contains the side-effects of deleting
simplification head constraints from the store (a task which must anyway be
done during execution of CHR). However, representing the store as a pure list
ListCHRStote and the pure functions in Figure 3 do not allow us to specify side
effects in Haskell. Thus we look to monads and mutable references in Haskell.
Monads provides the Haskell programmer a mechanism to define operations with
side-effects, as well as an interface to define imperative style operations. The key
idea of monads is as follows: a type of IO a where IO is a monad, represents
an IO operation that performs some action (which may contain side-effects) and
produces a value of type a.

Figure 4 shows the interface for the TVar data type which is a mutable trans-
actional memory reference and some monadic operations. A type TVar a is a
reference to a value of type a. newTVar, readTVar and writeTVar provides cre-
ation, read and write interfaces to transaction memory. Note that transactional
memory operations are executed only on the STM monad. The atomically oper-
ation simply executes an STM operation as an IO operation. For reasons that will
be clearer in the next section (Section 5) we have chosen to use transactional
memory as our store references. However, for the purpose of this section, it is
suffice to treat TVar’s as standard mutable reference. Monads also introduces
strictness (as oppose to laziness), hence by default a monadic operation IO a
must be executed in an imperative sequence. However, the Haskell libraries do
provide primitives to allow programmers to write non-strict monadic operations.
For instance, we can write a lazy map IO monad operation as follows:

mapIOLazily :: (a -> IO b) -> [a] -> IO [b]
mapIOLazily f (a:as) = do b <- f a

bs <- unsafeInterleaveIO (mapIOLazily f as)
return (b:bs)

mapIOLazily [] = return []

The unsafeInterleaveIO :: IO a → IO a library operation takes an IO
action of type IO a, but delays the execution of this action until the value of a
is required. Figure 5 illustrates the interfaces of an implementation of the CHR
Store on shared memory. For brevity we only show the interfaces of the reference
CHR store with the assumption that CHR store is implemented on transactional
memory. getCandidatesIO and buildMTreeIO are the monadic versions of the
MTree building operations. Note that we define them lazily with the help of the
unsafeInterleaveIO operation. removeAllOrNone, whose purpose will be clear
soon, is an STM operation which works as follows: check that a given list of
constraints is in the shared store and if so remove all from the store and return
true, otherwise just return false.

Figure 6 shows the simpagateMatchesIO operation which implements the
search for matches with non-overlapping simplification heads. It is summarized
by the following: If the current node is an MNode search it only if the constraint it
represents is still in store, by returning one match (simplification) or all matches
(propagation). If it is an MLeaf, delete all simplification heads from the store
and return the match. Note that deleteAllOrNone seemingly would never fail
and always return true. However, this is not true when we consider a concurrent
search technique (Section 6).
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data RefCHRStore
deleteFromStore :: SharedCHRStore -> Cons -> STM ()
isStored :: SharedCHRStore -> Cons -> STM Bool
getStoredContents :: SharedCHRStore -> STM [Cons]

getCandidatesIO :: Cons -> SharedCHRStore -> IO [(Subst,Cons)]
getCandidatesIO c st = do

ls <- getStoredContents st
return (getCandidates c ls)

buildMTree :: Subst -> [SearchTask] -> ListCHRStore -> [MTree]
buildMTree sub ((Guard g):ts) st =

if g sub then buildMTree sub ts st else []
buildMTree sub ((Lookup r):ts) st =

let RuleHead h c = r
ms = getCandidates (apply sub c) st

in map (\(sub’,c’) -> MTree (RuleHead h c’) (buildMTree (compose sub sub’) ts st)) ms
buildMTree sub [] = [MLeaf sub]

buildMTreeIO :: Subst -> [SearckTask] -> RefCHRStore -> IO [MTree]
buildMTreeIO sub ((Guard g):ts) st = do

case g sub of
True -> buildMTreeIO sub ts st
False -> return [] buildMTreeIO sub ((Lookup r):rs) st = do

let RuleHead h c = r
ms <- getCandidatesIO (apply sub c) st
mapIOLazily (buildMTreeIO’ sub r rs st) ms
where

buildMTreeIO’ sub (RuleHead h c) rs st (sub’,c’) = do
mts <- buildMTreeIO (compose sub sub’) rs st
return (MTree (RuleHead h c’) mts)

buildMTreeIO sub [] = return [MLeaf sub]

removeAllOrNone :: RefCHRStore -> [Cons] -> STM Bool
removeAllOrNone st cs = do

bs <- mapM (isStored st) cs
case and bs of

True -> do deleteFromStore st cs
return True

False -> return False

Fig. 5. Shared CHR Store & Monadic MTree Operations

5 Searching for Matching Constraints Concurrently

The previous section highlights the lazy approach of implementing CHR sim-
pagation rule head matching. The match search function is essentially a tree
search algorithm through the MTree, hence it is possible and beneficial to search
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simpagateMatchesIO :: [RuleHead] -> RefCHRStore -> [MTree] -> IO [Match]
simpagateMatchesIO rs st ((MNode r mts):mts’) = do

isvalid <- atomically (isStored st (cons r))
if isvalid then do

mcs <- simpagateMatchesIO (rs++[r]) st mts
mcs’ <- unsafeInterleaveIO (simpagateMatchesIO rs st mts’)
case (htype r) of

Simp -> do case mcs of
(m: ) -> return (m:mcs’)
[] -> return mcs’

Prop -> return (mcs++mcs’)
else simpagateMatchesIO rs st mts’)

simpagateMatchesIO rs st ((MLeaf sub):mts) = do
let simpheads = map cons (filter ((==Simp).htype) rs)
succ <- atomically (deleteAllOrNone st simpheads)
if succ then do

mcs <- unsafeInterleaveIO (simpagateMatchesIO rs st mts)
return ((Match sub rs):mcs)

else simpagateMatchesIO rs st mts)
simpagateMatchesIO [] = return []

Fig. 6. Simpagation Rule Head Match Searching

data TChan a
newTChan :: STM (TChan a) writeTChan :: TChan a -> a -> STM ()
readTChan :: TChan a -> STM a forkIO :: IO () -> IO ThreadId

Fig. 7. Transactional Channels & IO Forking Operation

branches of the tree concurrently. In this section, we present an alternative to
the lazy match search of Section 4: concurrent matching searching.

Up to now, we have only used the STM transaction memory as standard mu-
table memory references. Yet in fact the STM monad actually provides a Haskell
programmer a concurrency abstraction that supports composable operations and
communication channels TChan between concurrent processes. Show in Figure 7,
a TChan act as a channel of communication, which can be created, read and writ-
ten into by the operations newTChan, readTChan and writeTChan. Recall that
STM operations are executed from the IO monad with operation atomically
(Figure 4). This execution of an STM operation is guaranteed to be atomic (An
operation is fully executed as a single atomic action) and isolated (Effects of an
uncompleted operation cannot be observed by other concurrent operations, until
it has completed/commited).

Figure 8 shows a brute force implementation of the concurrent match search.
The concSimpagateMatchIO operation computes a set of non-overlapping matches
the brute force way: fork an IO thread for every branch of the MTree. Matches are
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concSimpagateMatchIO :: [MTree] -> SharedCHRStore -> IO (TChan Match)
concSimpagateMatchIO mts st = do

ms <- atomically newTChan
mapM (\mt -> forkIO (concSimpagateMatchIO’ [] ms st mt)) mts
return ms
where

concSimpagateMatchIO’ :: [RuleHead] -> TChan Match -> SharedCHRStore -> MTree -> IO ()
concSimpagateMatchIO’ rs tms st (MNode r mts) = do

isvalid <- atomically (isStored st (cons r))
if isvalid then do

mapM (\mt -> forkIO (concSimpagateMatchIO’ (rs++[r]) tms st mt)) mts
else return ()

concSimpagateMatchIO’ rs tms st (MLeaf sub) = do
let simpheads = map cons (filter ((==Simp).htype) rs)
succ <- atomically (removeAllOrNone st simpheads)
if succ then do

atomically (writeTChan tms (Match sub rs))
else return ()

Fig. 8. Brute Force Concurrent Match Search

gathered into a signal transactional channel which is returned as the final result.
Each thread independently determine if their correspond match do not conflict
with any other, simply by atomically verifying (removeAllOrNone) that their
simplification heads have not been removed from the store and removing them if
verification is successful. If this atomic operation is a success, the corresponding
matching data can be placed in the transactional channel.

6 Lazy and Concurrent Match Search

The concurrent match search discuss in Section 5 effectively computes the entire
MTree, ignoring any possible pruning of matches. This may mean that we will
eventually compute many redundant matches, for instance only a single match
is ever possible from a sub-tree with simplification root but the search of this
sub-tree is still done by mutliple competing threads.

This can be highly inefficient at times and the concurrent match searching
routine should be less aggressive when spawning threads to search sub-trees
rooted by simplification nodes. The are several design decisions we can choose,
one of which is to set a trashhold value for maximum number of threads for each
branches once the search reach its first simplification node. A more interesting
and balanced search strategy is to combine the lazy and concurrent search strat-
egy, where concurrent search is performed up to the first simplification head
from the top.

We provide, in Figure 9, the lazy and concurrent match search implemen-
tation in Haskell. Note that it prunes simplification nodes by executing a lazy
search (simpagateMatchesIO of Figure 6) in place of the concurrent search. Also
note that now the purpose of using STM transactional memory for the lazy search
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lconcSimpagateMatchIO :: [MTree] -> SharedCHRStore -> IO (TChan Match)
lconcSimpagateMatchIO mts st = do

ms <- atomically newTChan
mapM (\mt -> forkIO (lconcSimpagateMatchIO’ [] ms st mt)) mts
return ms
where

lconcSimpagateMatchIO’ :: [RuleHead] -> TChan Match -> SharedCHRStore -> MTree -> IO ()
lconcSimpagateMatchIO’ rs tms st (MNode r mts) = do

isvalid <- atomically (isStored st (cons r))
if isvalid then do

case (htype r) of
Simp -> do ms <- simpagateMatchesIO rs st [MNode r mts]

atomically (writeTChan tms (head ms))
Prop -> mapM (\mt -> forkIO (lconcSimpagateMatchIO’ (rs++[r]) tms st mt)) mts

else return ()
lconcSimpagateMatchIO’ rs tms st (MLeaf sub) = do

let simpheads = map cons (filter ((==Simp).htype) rs)
succ <- atomically (removeAllOrNone st simpheads)
if succ then do

atomically (writeTChan tms (Match sub rs))
else return ()

Fig. 9. Lazy and Concurrent Match Search Implementation

is clear as it allows us to integrated the lazy search with the concurrent search
consistently (Using standard Haskell mutable memory (MVars) would not allow
us to safely compose these two operations).

7 Practical Examples

In this section, we show some examples of actual CHR programs that may benefit
from the lazy and concurrent search match strategy. Consider Greatest Common
Divisor (GCD) CHR program with the initial store S

gcd1 @ gcd(0) ⇔ True
gcd2 @ gcd(n) \ gcd(m) ⇔ m > n | gcd(m− n)

S ≡ {gcd(2)#1, gcd(3)#2, gcd(4)#3, gcd(5)#4, }

Suppose we build a match tree for the second Gcd rule, with gcd(2)#1 as
the root matching with the propagation head gcd(n):
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Prop gcd(n) : gcd(2)#2
↙ ↓ ↘

Simp gcd(m) : gcd(3)#2 gcd(4)#3 gcd(5)#4
↓ ↓ ↓

Match : θ1 θ2 θ3

where θ1 ≡ {n 7→ 2, m 7→ 3}, θ2 ≡ {n 7→ 2, m 7→ 4}, θ3 ≡ {n 7→ 2, m 7→ 5}

The concurrent match search would spawn a thread for each branch to the
simplfication heads matching gcd(m), hence three variants of rule gcd2 can fire
concurrently.

Next, consider the CHR program modelling an Authorized Access Only
Buffer Protocol. Agents are allowed to execute two actions get(Id,X) and put(Id, X)
to get and put integers into a shared channel chan(Ch, Ids). However get and
put actions of respective agents are only possible if it is authorized to access the
channel.

get @ chan(Ch, Ids) \ get(Id, X), buf(Ch, Y ) ⇔ Id ∈ Ids | X = Y
put @ chan(Ch, Ids) \ put(Id, X) ⇔ Id ∈ Ids | buf(Ch, X)

S ≡ { chan(c1, [a1, a2])#1, get(a1, M)#2, get(a3, N)#3, get(a2, P )#4,
buf(c1, 1)#5, buf(c1, 2)#6, ...., buf(c1, 100)#104}

The store S consist of a single channel c1 which agents a1 and a2 has access,
3 get actions and 100 integers. Consider the match tree of the get rule with
chan(c1, [a1, a2])#1 as the root. We assume that the lazy and concurrent search
strategy and early guard scheduling analysis has scheduled the guard Id ∈ Ids
right after the get(Id, X) head matches are retrieved.

Prop chan(Ch, Ids) : chan(c1, [a1, a2])#1
↙ ↓ ↘

Simp get(Id, X) : get(a1, M)#2 get(a3, N)#3 get(a2, P )#4
↓ ↓ ↘

Simp buf(Ch, Y ) : buf(c1, 1)#5 buf(c1, 1)#5 buf(c1, 2)#6
↓ ↓

Match : θ1 θ2

where θ1 ≡ {Ch 7→ c1, Ids 7→ [a1, a2], Id 7→ a1, X 7→ M, Y 7→ 1}
θ2 ≡ {Ch 7→ c1, Ids 7→ [a1, a2], Id 7→ a2, X 7→ P, Y 7→ 2}

The above shows the sub-tree explored by the lazy and concurrent search
strategy. Concurrent search is executed at the top level, hence the propagation
node chan(Ch, Ids) spawns a thread for each constraint matching get(Id, X).
Since the next nodes are simplification heads, lazy searches are executed from
that point. This decision turns out to be a good one, since a brute force concur-
rent search would unneccessarily compute a match for each buffer and get action
pairs, most of which have over-lapping simplification heads.
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8 Conclusion and Related Works

We have highlighted the implementation of two search techniques for CHR rule
head matching, namely lazy and concurrent search, which is compatiable with
standard CHR compilation optimization techniques. Lazy evaluation allows us
to define search routines declaratively while not forcing strict and unnecessary
runtime computations. Concurrent searching allows us to explore the search
space of rule head matches more efficiently. By combining the two approaches,
we have a more well-balanced and practical search strategy.

Optimized CHR compilation techniques have been widely studied. An im-
plementation of CHR in Haskell is also explored in [4]. CHR match search com-
pilations discussed in [2] follows a strict order of processing CHR constraints
similiar to Prolog style (left-to-right, depth first) evaluations, while our imple-
mentation is more closely related to [10] which allows multiple rule variants to
fire from active constraints matching propagation rule heads. Yet to the best of
our knowledge, we are the first to explicitly explore concurrent and lazy match
search techniques. Local optimization techniques like optimal join-ordering and
early guard scheduling discussed in [7, 2, 10] are compatible with our implemen-
tation.

In future, we intend to introduce these match searching techniques to our con-
current CHR implementation [8]. Other possible future works include integrating
other existing CHR optimization techniques (eg. late storage, continuation opti-
mizations, etc) into our frame work, as well as obtaining emprical results on the
performance of various match search techniques discussed here.
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