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Abstract. CHR is usually compiled to high-level languages (like Prolog)
that make it hard or impossible to express low-level optimizations. This
is a pity, because it confines CHR to be a prototyping language only,
with an unacceptable performance for production quality software.
This paper presents CCHR, a CHR system embedded in the C program-
ming language, that compiles to low-level C code which is highly suitable
for fine-grained performance improvements.
In this way CCHR program performance comes close to matching that
of native C, and easily outperforms other CHR implementations.

1 Introduction

Constraint Handling Rules (CHR) [4] is a high-level, declarative language, origi-
nally designed for the implementation of user-defined, application-tailored, con-
straint solvers in a given host language. Nowadays CHR is increasingly being
used as a general programming language for a wide range of applications —
multi-agent systems, type systems and natural language processing, to name a
few — and for the study of algorithms.

Since its conception in 1991, CHR systems have been developed for several
host languages, most notably for Prolog and other declarative languages. The
first full CHR system was developed by Christian Holzbaur and Frühwirth [6].
Currently, the main advanced CHR system for Prolog is the K.U.Leuven CHR
system [12], available for a number of Prolog implementations. Other systems
have been developed for HAL [2] and Haskell, e.g. [9].

As far as we know, the only imperative programming language for which CHR
systems have been made is Java [1,17,16]. The compilation of CHR to Java allows
for more efficiency through in place updates. However, Java lacks fine-grained
control over low-level data structures, which prevents further optimization.

The C programming language was designed in 1972 as an imperative proce-
dural language that could easily be translated into machine code. After many
standardizations (K&R C, ANSI C, ISO C, C99), it is still heavily used. Through
the use of a standardized preprocessor and usage of (platform specific) system
headers, C source code can be portable, while having very system-specific fea-
tures like pointers (providing direct memory access). The combination of these
two properties makes C the target language of choice for compiling many higher-
level languages.
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In the footsteps of many other languages, we consider the suitability of C as
a target language for CHR. Our contributions are:

1. CCHR: the first integration of CHR with the C language (Section 3),
2. a C library for logical variables useful for porting CHR programs from Prolog

(Section 4),
3. a compilation scheme from CCHR to C code (Section 5), and
4. an implementation of CCHR that outperforms currently available CHR sys-

tems and comes very close to native C code, as our benchmarks show (Sec-
tion 6).

For the rest of this text, we will assume familiarity with both CHR and C.

2 Overview

Before we dive into the technical details of the CCHR language and its compiler,
we take a moment to reflect on the design principles and setting for CCHR.

Efficiency It should be clear by now that the primary design goal for CCHR is:

1. CCHR is an efficient system.

For this purpose we must borrow efficiency ideas from both the CHR and the
C world. The former gives us a good high-level basis to start from: the refined
operational semantics [3] and related optimizations [7,11]. The latter provides
us many low-level tricks and techniques: macros for heavy inlining, lean data
structures using pointers/arrays/bitwise operations, . . .

Familiarity As its secondary goals we require that CCHR is close to other CHR
systems:

2a. CCHR closely resembles other CHR systems.

This should allow CHR programmers to quickly switch from their current CHR
system to CCHR, and existing programs to be easily ported. This is in the first
place achieved by a familiar syntax and operational semantics. For the latter,
the previously mentioned refined operational semantics is again a good choice:
it is implemented by many other systems, and serves as a standard.

Example 1. The following CCHR program for computing the greatest common
divisor illustrates point 2a. If you are familiar with CHR in Prolog, the code
below should look familiar.

1 cchr {
2 constraint gcd(int);
3

4 triv @ gcd(0) <=> true;
5 dec @ gcd(N) \ gcd(M) <=> M>=N | gcd(M-N);
6 }



Of course we should also be considerate of the host language:

2b. CCHR is tightly integrated with C.

This design principle means that C programmers should be able to incorporate
CHR into their programs with a minimum of fuss. This means that CHR and
C code can be mixed freely, constraints range over native C data types and,
where possible, the underlying principles of the C language are respected. We
should be particularly apprehensive of programmer-managed memory. Previous
CHR implementations have largely neglected the issue of memory management
(except for [15]), relying on automatic garbage collection. CCHR however cannot
side-step this issue; it must duly free up any memory it allocates. But there’s
more: CCHR must actively support programmers in freeing any memory they
allocate themselves and then hand over to CCHR for use.

3 The CCHR Language

The CCHR language consists of a syntax for writing embedded CHR programs
in C, and a runtime system for invoking the CHR program from within C.

3.1 Syntax

The syntax of CCHR was heavily influenced by that of K.U.Leuven JCHR: a
good compromise between the well-known Prolog CHR syntax and that of the
host-language. We introduce the CCHR language with a small example program,
the bottom-up computation of Fibonacci numbers listed in Figure 1.

Like JCHR, the CHR code is contained in a block, the cchr block (lines
6-13). However, unlike JCHR, this block does not sit in a file of its own, but can
be embedded in a C program with the usual C definitions, e.g. a main function
(lines 15–25).

Within the cchr block we have two kinds of elements: constraint declarations
(line 7) and CHR rules (lines 9–12).

A constraint declaration is the keyword constraint followed by one or more
constraint specifiers (line 7). A constraint specifier consists of the constraint
name followed by its argument types 1 and, optionally, one or more options for
customizing the constraint behavior. Options include:

– option(fmt, Fmt, FmtArgs ) : a C printf format string and its argu-
ments for customizing the pretty-printing of the constraint,

– option(init, Code) : code to run when a new constraint is initialized,
– option(destr, Code) : code to run when a constraint is destroyed,
– option(add, Code) : code to run when a constraint is stored, and
– option(kill, Code) : code to run when a constraint is removed from the

store.
1 The types are obligatory, as C is a statically typed language.



CHR rules follow closely the Prolog CHR syntax, notably exceptions being:

– A rule ends in a semi-colon as is usual for C (rather than a period).
– The keyword alt declares alternative formulations of a guard, and allows the

CHR compiler to choose the form that is most efficient for indexing. Consider
alt(N2==N1+1,N2-1==N1) in line 11. Given N1 we can compute the N2
to look up with the first form, and vice versa with the second form.

– Local variable definitions and arbitrary C statement blocks are allowed in
guards and bodies.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 #include "fib_cchr.h" /* generated header file */
5

6 cchr {
7 constraint upto(int), fib(int,int);
8

9 begin @ upto(_) ==> fib(0,1), fib(1,1);
10 calc @ upto(Max), fib(N2,M2) \ fib(N1,M1) ==>
11 alt (N2==N1+1,N2-1==N1), N2<Max |
12 fib(N2+1, M1+M2);
13 }
14

15 int main(int argc, char **argv) {
16 cchr_runtime_init();
17 cchr_add_upto_1(90);
18 cchr_consloop(j,fib_2,{
19 printf( "fib(%i,%i)\n" ,
20 cchr_consarg(j,fib_2,1),
21 cchr_consarg(j,fib_2,2));
22 });
23 cchr_runtime_free();
24 return 0;
25 }

Fig. 1. Bottom-up Fibonacci in CCHR

3.2 The CCHR Runtime

The CHR constraints defined in a cchr block are meant to be called from within
C code. For this purpose a number of runtime functions are provided in a header
file (line 4), which is generated by the CCHR compiler.



Firstly, before any of the other runtime functions can be used, the CCHR
runtime has to be initialized with the cchr runtime init() . This function
allocates and initializes the constraint store and related datastructures. Similarly,
the last runtime function to be called is cchr runtime free() which frees
again all allocated memory.

New constraints can be added with:

void cchr_add_ 〈constraint〉_〈arity〉( 〈arg1 〉, 〈arg2 〉,...);
At any time, the CHR constraint store can be inspected. For this purpose

we have the function:

cchr_consloop( 〈var〉, 〈constraint〉_〈arity〉, 〈code〉)
where 〈code〉 is the C code to execute for instances of 〈constraint〉/〈arity〉.
Within 〈code〉 the following macro may be used to refer to the 〈i〉th argument
of the constraint instance:

cchr_consarg( 〈var〉, 〈constraint〉_〈arity〉, 〈i〉)
For example, lines 18–22 print all the fib/2 constraints in the constraint store.

Finally, when any of a constraint instance’s arguments are changed, the pro-
grammer may manually reactivate that instance with one of:

cchr_reactivate_all();
cchr_reactivate_all_ 〈constraint〉_〈arity〉();
cchr_reactivate_ 〈constraint〉_〈arity〉(cchr_id_t PID );

3.3 An Advanced Example

Fibonacci numbers grow large very quickly, overflowing the standard int integer
representation of C, or even larger long or long long datatypes that may be
present. Figure 2 shows how we can adapt the previous program to use the
unbounded integer representation of the GNU Multi-Precision library (GMP).
We include the GMP header file (line 1) and define a type big int t that
contains a pointer to a big integer (line 3). The second argument f fib is now
declared to be of this type (line 7). When a fib constraint is destroyed (e.g.
when the constraint store is freed), the memory allocated for the big integer
should be freed as well (line 8).

The arithmetic on Fibonacci numbers in the rules now has to be performed
with GMP procedures. For this purpose we first declared local variables (line 11,
16), and then call the appropriate procedures in C blocks (line 12, 17).

4 Logical Variables

Many CHR programs written for Prolog make heavy use of logical variables.
When porting these programs to CCHR we are confronted with the lack of logical
variables in C. In order to overcome this issue, we provide our own library of
logical variables for C. This library is independent of CCHR; but it provides all
the necessary ingredients to couple the logical variables with CCHR—or another
constraint solver.



1 #include <gmp.h>
2

3 typedef struct { mpz_t v; } big_int_t;
4

5 cchr {
6 constraint upto(int),
7 fib(int,bigint_t) i
8 option (destr,{mpz_clear($2.v);});
9

10 begin @ upto(_) ==>
11 bigint_t X=, bigint_t Y=,
12 { mpz_init_set_si(X.v,1); mpz_init_set_si(Y.v,1) ;},
13 fib(0,X), fib(1,Y);
14 calc @ upto(Max), fib(N2,M2) \ fib(N1,M1) <=>
15 alt (N2==N1+1,N2-1==N1), N2<Max |
16 big_int_t Sum=,
17 { mpz_init(Sum.v); mpz_add(Sum.v,M1.v,M2.v); },
18 fib(N2+1, Sum);
19 }

Fig. 2. Fibonacci revisited with the GNU Multiple-Precision library

4.1 Definition

Our generic library is defined in terms of macros, a primitive substitute for
parametric polymorphism.

A new type of logical variable type 〈logical〉 is defined with:

logical header( 〈value〉, 〈attribute〉, 〈logical〉)

where 〈value〉 is the type of the values that can be assigned to the logical variable.
The type 〈attribute〉 is the type of the attribute data that can be attached to a
logical variable, similar to attributed variables in Prolog [5].

The operations 〈logical〉 testeq and 〈logical〉 seteq are generated for com-
paring and equating two logical variables, and 〈logical〉 setval assigns a value
to a logical variable.

Example 2. The program is an excerpt of the well-known leq CHR program
ported to CCHR:

1 logical_header(int,...,lint)
2

3 cchr {
4 constraint leq(lint,lint);
5

6 leq(X,Y) <=> lint_testeq(X,Y) | true;



7 leq(X1,Y1), leq(Y2,X2) <=>
8 lint_testeq(X1,X2),lint_testeq(Y1,Y2) |
9 {lint_seteq(X1,Y1);};

10 }

4.2 CCHR Integration

In the K.U.Leuven and other Prolog-based CHR systems, logical (attributed)
variables are tightly integrated with the CHR program in two ways:

1. Whenever a variable is unified with either another variable or with a value,
all constraints on that variable are reactivated.

2. An index is stored in a variable’s attribute to quickly lookup all constraints
on that variable for a multi-headed rule match.

For CCHR we exploit our logical variables in a similar way.
For the 〈attribute〉 we define a list of constraints (in pseudo-code):

struct {
constraint element;
leq_list* tail;

} leq_list;

From the CCHR side, this list is kept up to date with the add and kill
options:

constraint leq(int,int)
option (add,{ leq_list* list = new leq_list;

list->element = $0;
list->tail = get_attr($1);
set_attr($1,list);
... /* same for 2nd arg */

})
option (kill,...);

The logical variables side provides a call-back mechanism to react on changes
of the variables. Unlike Prolog’s single call-back function, we make a distinction
between two cases:

– 〈logical〉 setval callback( 〈var〉, 〈val〉) is called when a logical variable
is assigned a value.
For CCHR we define this callback to reactivate all the constraints stored in
the attribute of 〈var〉.

– 〈logical〉 seteq callback( 〈var1 〉, 〈var2 〉) is called when two logical vari-
ables are equated.
For CCHR we define this to first merge the attributes of 〈var1 〉 and 〈var2 〉,
before reactivating the constraints.



The list in the attribute is also used by CCHR for lookup of constraints on a
logical variable. This is usually more efficient than iterating through the whole
constraint store.

Currently, the integration is done by hand, but it can easily be automated.

5 The CCHR Compiler

In this section we provide an overview of the CCHR compiler. After a general
discussion of the general compiler architecture, we discuss two interesting aspects
of the C back-end in more detail: the CHR assembler language and the constraint
store data structures.

5.1 The Compiler Architecture

The compilation of CCHR is a staged process. Here we provide a brief overview
of the subsequent stages. An overview can be found in Figure 3.

Fig. 3. The compiler architecture

We start from a C program interleaved with cchr blocks.

1. The cchr blocks are extracted from the program for further processing, while
the rest of the program is left untouched.

2. The cchr blocks are transformed into a CHR abstract syntax tree (CHR-
AST), using a Bison parser on top of a Flex lexer.

3. The CHR-AST is transformed into a CHR semantic model (CHR-SM), which
is much more suitable for performing program analysis, transformation and
code generation. The transformation involves a.o.
– Identifiers are classified into constraints, variables, options, . . .
– The occurrences of constraints are determined.
– CHR rules are transformed into head normal form.
– Variable dependencies between head constraints are determined (for join

ordering).



4. The CHR-SM is optimized using many of the well-known optimizations [7,11],
e.g.: late storage optimization, join ordering and indexing.

5. Code is generated from the CHR-SM. Rather than generating low-level C
code directly, we generate CHR assembler instructions (CHR-ASM), which
is much closer to our problem domain.

6. The CHR-ASM code, together with C marco definitions for the assembler
instructions, is merged again with the original C program.

7. The C preprocessor is invoked for expanding the CHR-ASM instructions into
C code.

8. The C compiler is invoked to generate a binary executable.

5.2 The CHR assembler language

It is customary in compiler design to decouple the back-end code generation
from the core of the compiler. This is were the CHR-ASM language fits in; it’s
as fine-grained as necessary, but not more. Every key concept in the low-level
execution of CHR maps more or less directly on a single instruction. This makes
code generation a fairly straightforward matter.

In the setting of CCHR we have conveniently avoided writing a back-end
compiler from CHR-ASM to C code. By defining the assembler instructions as
C macros, the C macro preprocessor takes care of this work for us. By replacing
one set of macro definitions with another, we obtain a different behavior, without
affecting the rest of the compiler. For example, the CCHR debug mode has been
implemented in this way: C code for debug messages2 is included in the macro
definitions.

Although we lack the space for a full overview of the CHR-ASM language
here, the following example should give a good impression.

Example 3. Figure 4 lists the CHR-ASM code for the first occurrence of the fib
constraint of Figure 1.3

First, the arguments of the active constraints are read into local variables N1
and N2 (lines 1–2).

For the first lookup, a variable K2 is declared that ranges over the fib
constraints in the store, via the index on the first argument (line 3). The first
argument of the constraints K2 , should be N+1 (line 4). Now we start the
iteration (line 5), but ignore the active constraint (line 6). In the loop, we read
the arguments of K2 into local variables N2,M2) (lines 7–8).

For the second lookup, a nested loop is created over all instances K1 of the
upto constraint, not using an index (line 9). As with the other constraints, the
argument of K1 is read into local variable Max (line 10). If the guard succeeds
(line 11), the active constraint is killed (line 12) and the body executed (line 13).
After the execution of the body, we call the (optional) destructor of the killed
constraint (line 14) and return from the occurrence (line 15).

2 This is were the fmt option is used.
3 For readability parentheses and commas have been omitted.



1 IMMLOCAL int N1 ARG(fib_2,arg1)
2 IMMLOCAL int M1 ARG(fib_2,arg2)
3 DEFIDXVAR fib_2 idx1 K2
4 SETIDXVAR fib_2 idx1 K2 arg1 LOCAL(N1)+1
5 IDXLOOP fib_2 idx1 K2
6 IF DIFFSELF(K2)
7 IMMLOCAL int N2 LARG(fib_2,K2,arg1)
8 IMMLOCAL int M2 LARG(fib_2,K2,arg2)
9 LOOP upto_1 K1

10 IMMLOCAL int Max LARG(upto_1,K1,arg1)
11 IF LOCAL(N2)< LOCAL(Max)
12 KILLSELF fib_2
13 ADD fib_2 LOCAL(N2)+1 LOCAL(M1)+ LOCAL(M2)
14 DESTRUCTfib_2 LOCAL(N1) LOCAL(M1)
15 END

Fig. 4. CHR-ASM code for the fist occurrence of fib

5.3 Runtime Data Structures

The two main data structures we use in CCHR are:

– doubly linked lists: for the constraint store, and
– hashtables: for constraint store indexes and propagation histories.

Doubly Linked Lists The global CHR constraint store consists of one doubly
linked list for every constraint symbol in the program. Every unindexed lookup
of a constraint iterates through the appropriate list, which takes O(n) time where
n is the number of instances. Because the list is doubly linked, we can both insert
and remove instances cheaply and in O(1) time.

Our doubly linked lists are implemented on top of arrays, for reasons of mem-
ory locality. Each element in the array is a C struct containing the indexes of
the previous and next element, as well as the actual payload: the constraint in-
stance. As we have to do our own memory management, the array actually hosts
two linked lists: one for the constraint instances, and one so-called freelist for
the empty array entries. Array entries move between the two lists as instances
are added and removed. When the array fills up (and the freelist empties) com-
pletely, a bigger array is allocated and all elements are copied. For that reason,
we avoid direct C pointers into the array, but index into the array with position
numbers.

Hashtables Hashtables are the key to the efficient execution of multi-headed
rules [13]. Not only do they provide us with the same (though now amortized)
O(1) addition and removal as linked lists, but also and more importantly lookup
takes only constant time4.
4 Provided that we have the appropriate key.



The two main challenges for a decent hashtable implementation are collisions
and the hash function. For the latter we adopted the public domain lookup3
algorithm [8].

Collisions occur when distinct keys hash to the same entry in the table. The
three main options for resolving a collision are:

1. We increase the table size to avoid the collision.
2. We attach an overflow bucket to the entry.
3. We put the new element in the next free entry in the table.

However, neither of these options is very satisfactory for high performance CHR.
The first two options require frequent allocation of new tables (1) or overflow
buckets (2). The third option leads to complicated lookup and removal proce-
dures. Hence, CCHR turns to a forth option: cuckoo hashing. Cuckoo hashing
employs two tables (A and B) with independent hash functions. A new element
x is inserted at its appropriate entry in table A. If that entry was previously
occupied by y, then y has to move to table B. This may cause z to move from
B to A, and so on. For a full description of cuckoo hashing we refer to [10].

6 Evaluation

In this section we evaluate the performance of CCHR on a number of ex-
isting CHR benchmarks. We compare with two other CHR implementations,
K.U.Leuven CHR in SWI-Prolog (v5.6.17) and K.U.Leuven JCHR (v1.5.1) in
Java (1.5.0.11), as well as with a direct translation of the benchmarks in C (GCC
4.1.2).

Our benchmark suite consists of

– gcd: greatest common divisor algorithm by Euclid (see Section 2),
– fib: bottom-up Fibonacci with GMP (SWI,CCHR,C) or java.math.BigInteger

(Java) (see Figure 2),
– primes: the prime number sieve of Erathostenes,
– tak: the Takeuchi function with tabulation,
– leq: a cycle of partial order constraints, and
– ram: a RAM simulator running a count down from N program.

All benchmarks were run on an AMD Athlon64 3500+ CPU with 1GB of
RAM, running Linux 2.6.19 with a low load.

Table 1 lists the geometric averages of all six benchmarks for different problem
sizes. The averages for C have been set to 1 and those of the other systems have
been scaled relatively.

These results show that CCHR is easily two to three orders of magnitude
faster than existing CHR systems for Prolog and Java. The gap with hand-
written C code is for five out of six of the benchmarks quite small, less than one
order of magniute. However, the ram benchmark shows that further improvement
of CCHR is still possible and necessary.



benchmarks SWI-Prolog JCHR CCHR C

gcd 22,000 - 3.4 1
fib 21,000 940 8.5 1

primes 310 490 6.9 1
tak 210 110 4.3 1
leq 1,100 440 9.8 1
ram 4,700 11,000 120.0 1

Table 1. Relative Geometric Averages

Let us consider the two extremes, gcd and ram, in more detail. Firstly, the re-
sults for gcd are depicted in Figure 5. The benchmark computes fib(5,1000 ×n)
where n is the problem size. In other words, it consists of a loop that counts down
from 1000×n in steps of 5. No timings have been recorded for JCHR, because the
benchmark causes the Java stack to overflow, even for small values of n. CCHR
does not suffer from these stack overflow problems, but manages to compile the
program down to a tight loop. Hence, CCHR’s performance is consistenly close
to that of C. SWI-Prolog’s stack behavior is similarly good, but it suffers from
a “fat” loop which is four orders of magnitude slower than either C or CCHR.
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Fig. 5. The gcd benchmark

Secondly, the ram benchmarks are shown in Figure 6. This benchmark runs
a RAM program that counts down from n, the problem size, on the RAM sim-



ulator [14]. The C implementation consists of a loop that 1) fetches the next
instruction and 2) executes it in a switch statement. Both 1) and any operand
fetches in 2) consist of direct array loopups. The lookups in the CHR implemen-
tations, in contrast, involve more costly constraint store lookups and constraint
argument retrievals. This explains the performance gap between C and the CHR
systems. A secondary effect of the costly loops, is the early stack overflow, first
in JCHR and then CCHR.
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7 Related Work

The first signficant achievement in the field of CHR implementation was the
stack-based compilation model [6], which was later formalised as the refined
operational semantics [3]. This stack-based model allows for efficient execution
because it closely resembles the execution model of typical target languages of
CHR. C shares this same stack-based model, which is why the refined operational
semantics turns out to be a good basis for CCHR as well.

With a good compilation model in place, various optimizations were proposed
[7]. This led to questions on the inherent efficiency of CHR: could particular
algorithms like union-find be implemented with optimal complexity (yes: [13]),
and in fact any algorithm at all (yes: [14])? However, good complexity in theory
does not equal good constant factors in practice. In [14] it is reported that CHR



is at its best one order of magnitute slower than C. Our benchmarks show that
the recent K.U.Leuven JCHR implementation [16] considerably improves upon
constant factors, but still does not bridge the wide gap with C.

8 Conclusion

In this paper we have presented the CCHR system, a CHR system embedded
in C. Thanks to its compilation to efficient low-level code, it easily outperforms
existing CHR implementations and comes close to native C code.

CCHR opens up a whole new field of applications for CHR, including operat-
ing systems and embedded devices. On the level of language integration, CCHR
offers the opportunity of providing CHR to many other programming languages
that have a C interface. Both of these deserve further investigation.

As to the CCHR implementation itself, we would like to implement the full
range of program analyses and optimizations described in the literature. In par-
ticular, we will pay attention to the choice of constraint store data structures,
such as efficient indexes, and try to further narrow the gap with native C code.
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